首页> 外文OA文献 >Sparse Reconstruction-based Detection of Spatial Dimension Holes in Cognitive Radio Networks
【2h】

Sparse Reconstruction-based Detection of Spatial Dimension Holes in Cognitive Radio Networks

机译:基于稀疏重构的空间尺寸空洞检测   认知无线电网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we investigate a spectrum sensing algorithm for detectingspatial dimension holes in Multiple Inputs Multiple Outputs (MIMO)transmissions for OFDM systems using Compressive Sensing (CS) tools. Thisextends the energy detector to allow for detecting transmission opportunitieseven if the band is already energy filled. We show that the task describedabove is not performed efficiently by regular MIMO decoders (such as MMSEdecoder) due to possible sparsity in the transmit signal. Since CSreconstruction tools take into account the sparsity order of the signal, theyare more efficient in detecting the activity of the users. Building onsuccessful activity detection by the CS detector, we show that the use of aCS-aided MMSE decoders yields better performance rather than using eitherCS-based or MMSE decoders separately. Simulations are conducted to verify thegains from using CS detector for Primary user activity detection and theperformance gain in using CS-aided MMSE decoders for decoding the PUinformation for future relaying.
机译:在本文中,我们研究了一种频谱感知算法,该算法可使用压缩感知(CS)工具检测OFDM系统的多输入多输出(MIMO)传输中的空间尺寸孔。这扩展了能量检测器,以允许检测传输机会,即使频带已经被能量填充。我们显示,由于发射信号中可能存在稀疏性,常规MIMO解码器(例如MMSEdecoder)无法有效地执行上述任务。由于CS重建工具考虑了信号的稀疏度,因此它们在检测用户活动方面更为有效。通过使用CS检测器成功检测活动,我们表明,使用aCS辅助的MMSE解码器比单独使用基于CS的或MMSE解码器产生的性能更好。进行仿真以验证使用CS检测器进行主要用户活动检测所获得的收益,以及使用CS辅助MMSE解码器对PU信息进行解码以进行未来中继时的性能增益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号